
Panel@Spatial Omics 2021: Human Reference Atlas

April 15, 2021: 15:30-16:30 BST (UTC+1)

Spatial Biology Europe: ONLINE LIVE & INTERACTIVE CONTENT SCHEDULE

DAY TWO: 15 APRIL 2021

Panel Discussion: Human Reference Atlas

Moderator: KATY BÖRNER, Victor H. Yngve Distinguished Professor of Engineering and Information Science, Indiana University

Panellists:

JAMES GEE, Associate Professor of Radiologic Science in Radiology. Director, Penn Image Computing and Science Laboratory, Department of Radiology, Perelman School of Medicine, **University of Pennsylvania**

XUEGONG ZHANG, Professor of Pattern Recognition and Bioinformatics, Director, Bioinformatics Division, TNLIST (Tsinghua National Laboratory for Information Science & Technology), Department of Automation, **Tsinghua University**

AMY BERNARD, Director, Science & Technology Strategy, Allen Institute

BERNARD DE BONO, Principal Investigator, Associate Professor, University of Auckland

15:30

-16:00

James Gee

Amy Bernard

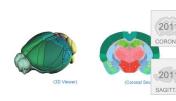
Brain Reference Atlases

The **Allen Institute** has a history of making open datasets, standards and reference resources in bioscience

- A planar human brain reference atlas was developed to support a brain-wide map of gene expression (2012)
- Refinement of this planar map extended to a 3D volume as an anatomical common coordinate framework for brain structure and cell types (2016) - and spatial -omics

An anatomically comprehensive atlas of the adult human brain transcriptome (2012) https://www.nature.com/articles/nature11405

ALLEN BRAIN ATLAS


http://atlas.brain-map.org/

Allen Brain Reference Atlases

The Allen Institute for Brain Science has generated multiple reference atlases, to use with our online datasets or as standalone resources. Refer to our Citation Policy for information on how you may use these images in your work.

Adult Mouse

These anatomical reference atlases illustrate the adult mouse brain in coronal and sagittal planes of section. They are the spatial framework for datasets such as in situ hybridization, cell projection maps, and in vitro cell characterization

DOCUMENTATION REFERENCE HISTOLOGICAL DATA SDK API COMMUNITY FORUM ADDITIONAL REFERENCE DATA

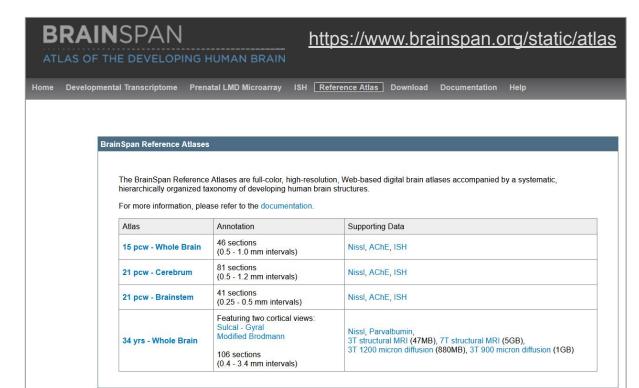
Adult Human

These anatomical reference atlases illustrate the adult human brain, using modified Brodmann or gyral annotation

DOCUMENTATION ONTOLOGY SUPPLEMENTAL HISTOLOGICAL DATA CITATION

Developing Mouse

These anatomical reference atlases illustrate the developing mouse brain, covering seven stages of embryonic (E) and postnatal (P) development. Dr. Luis Puelles used a custom developmental taxonomy for annotation of the Allen Developing Mouse Brain Reference



Human Brain Atlas

Goals:

- Computable
- Accompanied by methods and metadata
- Useful to researchers
- Serve out robust standard references (ontology, taxonomy, spatial)
- Integration or compatibility with other human and/or neuro datasets & standards

EBRAINS

https://atlas.brain-map.org/

Adult Brain Atlas

Resources

- Open, online atlas portal
- Software development toolkit (SDK and API)
- Applications to build extensible nomenclature from taxonomies (<u>GitHub</u>)


Common cell type nomenclature for the mammalian brain. (2020)

https://elifesciences.org/articles/59928

Comprehensive cellular resolution atlas of the adult human brain.

https://onlinelibrary.wiley.com/doi/10.100 2/cne.24080

Volume 524, Issue 16 Special Issue: The Allen Human Brain Reference Atlas

Pages: Spc1, 3125-3481 November 1, 2016

Xuegong Zhang

Xuegong Zhang

The organization of cell atlases: apparent coordinates vs. latent representations

Multiple apparent coordinates of a cell atlas

- OSpatial: anatomic parts, spatial locations, ...
- ○Temporal: developmental trajectory, cell cycle, ...
- oFunctional: cell types/states, stemness, malignancy, marker gene expression, ...

The coordinates are of three major types: discrete, continuous, structured

Multifaceted heterogeneity in a cell atlas: multiple intertwined coordinates

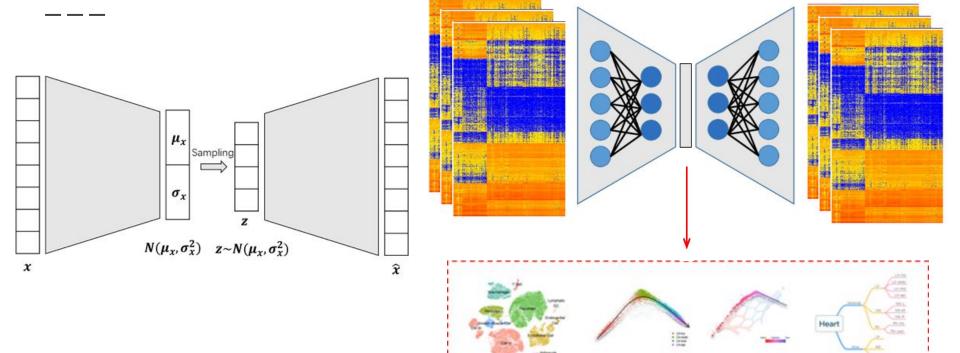
Signal or noise?

When multiple coordinates intertwined, specific studies usually take one as signal and the rest as noise

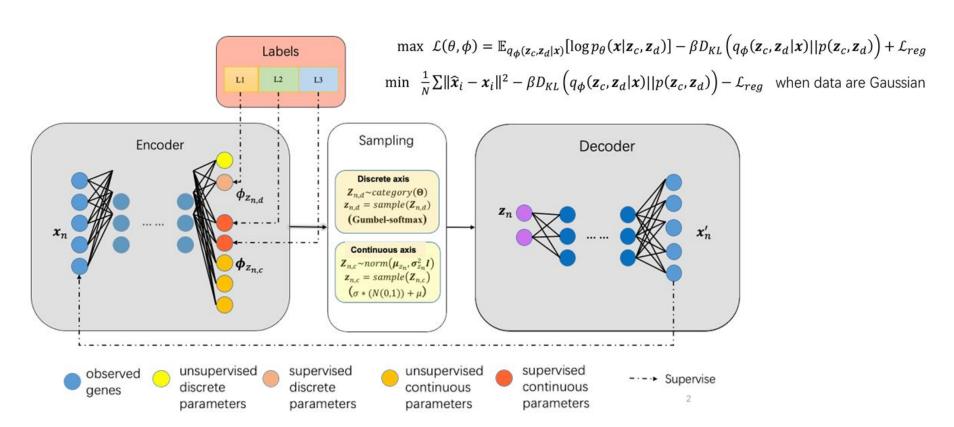
But they should be all signals in a reference atlas

	Cell types	Cell cycle	Pseudotime	Other
Cell type study	Signal	Confounder	Confounder	Confounder
Cell cycle study	Confounder	Signal	Confounder	Confounder
Development study	Confounder	Confounder	Signal	Confounder
Reference Atlas	Signal	Signal	Signal	Signal

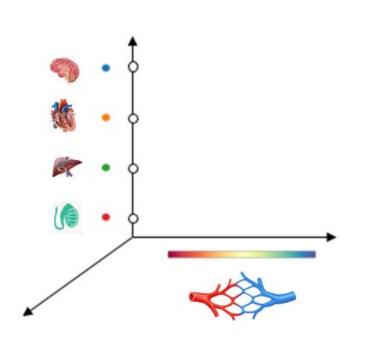
A general representation framework for the information structure is desirable

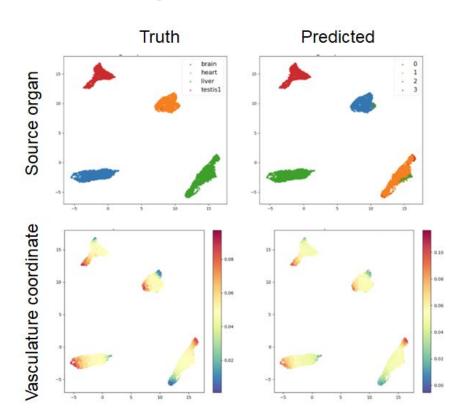

- To provide a the full portraiture of cells
- To represent the multifaceted cell heterogeneity in an atlas
- To analyze relations across multiple coordinates
- To measure the intrinsic complexity of a cell population
- To find hints for unknown factors
- ...

UniCoord: An unified coordinate system for cell atlases


An universal latent CCF (common coordinate framework)

- -A low-D vector representation of the hi-D data
- -Preserves multifaceted intrinsic coordinates
- -Explainable and computable
- -Potential for finding unknown heterogeneity
- -Individual invariant
- -Full annotation of new query cells
- -Can generate pseudo-cells


An Expanded VAE Model for Learning Multifaceted Coordinates



The expanded VAE model of UniCoord

Example of UniCoord Experiments

Bernard de Bono

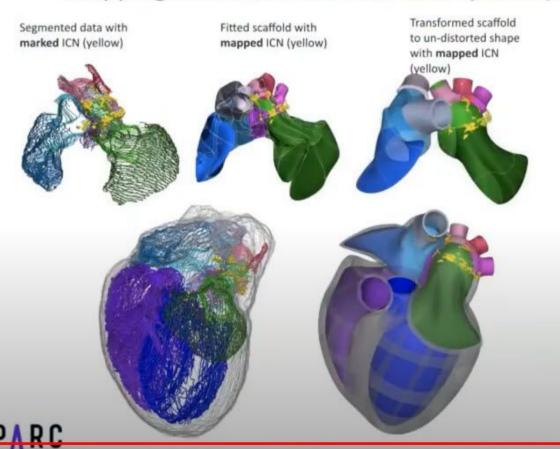
<u>SPARC</u>

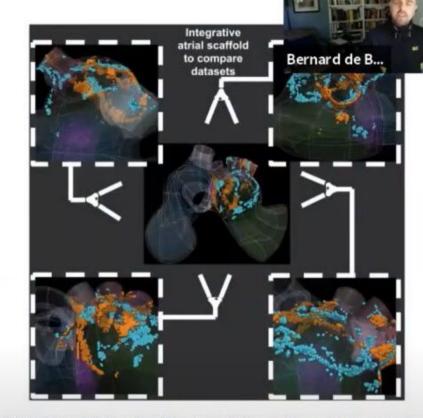
Connectivity Knowledge

Date

April 15th, 2021

Presented by


Bernard de Bono MD PhD


Affiliation

Uni of Auckland

Science Highlight:

Mapping intrinsic cardiac nervous system (ICN)

"The ICN is "the little brain of the heart" integrating multiple local sensory and autonomic inputs and regulates cardiac function. In this study, we investigated the structural consistency and variability of the rat ICN within and between sexes...This study evaluated rat ICNs for these uses by employing imaging techniques and mathematical scaffolds to create an integrative map of these neurons."-Mahyar Osanlouy

published: 16 February 2021 doi: 10.3389/tninf.2021.560050

Knowledge Representation for Multi-Scale Physiology Route Modeling

Natallia Kokash 1* and Bernard de Bono 1.2

[†] Peoples' Friendship University of Russia (RUDN University), Moscow, Russia, [‡] Auckland Bioengineering Institute, University of Auckland, New Zealand

We present a framework for the topological and semantic assembly of multiscale physiology route maps. The framework, called ApiNATOMY, consists of a knowledge representation (KR) model and a set of knowledge management (KM) tools. Using examples of ApiNATOMY route maps, we present a KR format that is suitable for the analysis and visualization by KM tools. The conceptual KR model provides a simple method for physiology experts to capture process interactions among anatomical entities. In this paper, we outline the KR model, modeling format, and the KM procedures to translate concise abstraction-based specifications into fully instantiated models of physiology processes.

Keywords: physiology, multi-scale model, knowledge management, anatomy, connectivity, ontology

OPEN ACCESS

1. INTRODUCTION

Edited by: Andrew P. Davison, UMR9197 Institut des Neurosciences

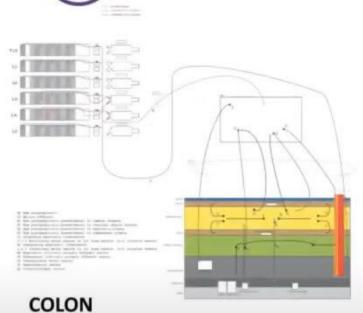
Paris Saclay (Neuro-PSII, France

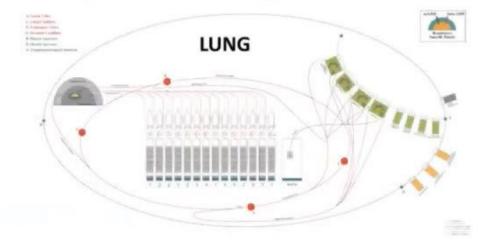
frontiers

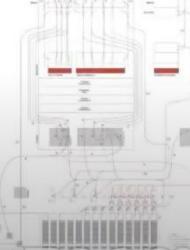
in Neuroinformatics

Physiology process models take into account the anatomical routes of communication that are necessary for mechanisms to occur. For example, process models study mechanisms in which:

- an increase in atrial pressure gives rise to an increase in glomerular filtration rate:






SPARC Connectivity KnowledgeBase

HEART

BLADDER

K

Novel Insights Into Complex Conditions

- ExRNA
- HuBMAP
- Kids First
- · SPARC

- · GTEx
- Kids First
- ·LINCS

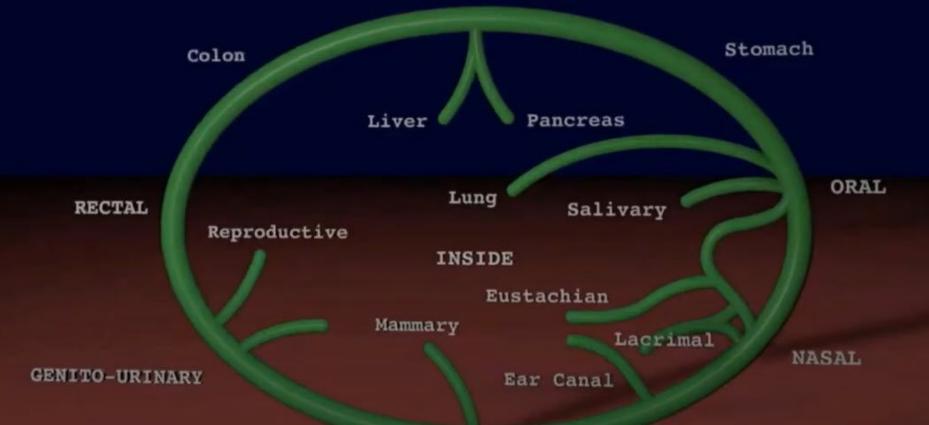
Θ

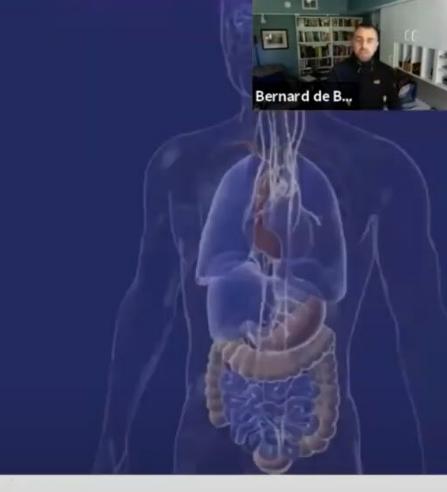
Data-driven Treatment Planning

- · IDG
- GTEx
 Kids First
- · LINCS
- · LINU

Working with Data in the Cloud

- · ExRNA
- · GTEx
- · HuBMAP
- IDG
- · Kids First
- Kids First
 LINCS
- Metabolomics
- · SPARC
- Actively Engaged with CFDE
- Data included in CFDE
- Sample Use Cases
- Additional Eligible Data Coordinating
 Lead Coordinating
 The Coordinate in CFDE
 In the Future




BODY

OUTSIDE

Small Intestine

Thank You

Learn about future webinars and tutorials at sparc.science/news-and-events

Q&A